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THREE APPROACHES TO AI-RELIGION RESEARCH

In recent years, the interdisciplinary investigation on the relationships and
interactions between artificial intelligence (AI) and religion developed into
at least three approaches.

The first approach has religion at its center: it applies outcomes from
Al and computer science to formulate new philosophical, sociological, or
theological insights on spiritual and religious topics and to analyze changes
in practices (Sutinen and Cooper 2021). This approach might also assess
the impact of technological outcomes, developments, and habits—such as
digitalization and the diffusion of the internet—on spiritual notions and
religious beliefs and rituals (Phillips 2019; Campbell and Tsuria 2021).

The second approach has computer science at its center: it analyzes and
presents the impact that discoveries and advances in computer science and
Al have on our culture, society, or world vision by using metaphors based
on theological and philosophical concepts (Schmidhuber 2012; Marcus
2013). In this approach, religious ideas and theological concepts are the
means to investigate how the relationship with technology and AI re-
frames or recalibrates our orientations in thinking and in the world (Oba-
dia 2022).

The third approach seeks a full interdisciplinary connection between
research in religion and in symbolic Al: it aims to have both poles as
its center, by building a theoretical and experimental interconnection be-
tween metaphysics and computer science. This interconnection consists in
exploring, in an automated reasoning environment, informal metaphysi-
cal arguments featuring concepts in philosophy of religion and theology.
Different programs are applied to metaphysical arguments, after a pro-
cess of formalization and translation of such arguments into the software
syntax. This is the approach provided by the program in computational
metaphysics, inaugurated by Fitelson and Zalta (2007) as application of
the research on axiomatic theory of abstract objects. Recent contributions
to this research program include works by Christoph Benzmiiller and his
teams in Berlin, Luxembourg, and Bamberg (Benzmiiller and Woltzenlo-
gel Paleo 2016; Kirschner, Benzmiiller, and Zalta 2019; Benzmiiller 2020).
This third direction of research produces effective cross-contributions be-
tween the two disciplines: on one hand, Al programs are applied to higher
abstract languages formalizing complex metaphysical/theological informal
concepts and arguments; on the other hand, the feedback from the the-
orem prover often provides unexpected and useful insights on the meta-
physical and theological concepts and arguments.

My article aims to provide a first introduction to this third approach,
in order to invite philosophers and theologians to further familiarize with
outputs from computational metaphysics and the new perspectives it can
grant on their work material. At the same time, my article focuses on
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assessing one outcome of the program in computational metaphysics:
Oppenheimer and Zalta’s computationally discovered simplification of
Anselm’s ontological argument in Proslogion 11 (Oppenheimer and Zalta
2011, 2021).

In what follows, I outline Oppenheimer and Zalta’s formalization of
Anselm’s argument, their translation of such formalization in the lan-
guage of theorem prover Prover9, and their analysis of the simplifica-
tion that resulted by running the program (sections “Oppenheimer and
Zalta’s Formalization of Anselm’s Argument” and “Oppenheimer and
Zalta’s Analysis of the Computational Simplification”). Section “Diago-
nalization of the Ontological Argument” presents an observation con-
cerning the application of Cantor’s diagonal method to the ontological
argument. In section “Philosophical and Theological Relevance of Sym-
bolic AI Applications,” I explore why familiarization with the research in
computational metaphysics is relevant in current debates in philosophy of
religion.

OPPENHEIMER AND ZALTA’S FORMALIZATION OF ANSELM’S
ARGUMENT

In order to understand what Oppenheimer and Zalta inferred from their
computationally discovered simplification of Anselm’s ontological argu-
ment, I need to first outline their formalization of the argument (Oppen-
heimer and Zalta 1991).

The logical background is Russell’s theory of well-defined definite de-
scriptions, that is, definite descriptions that have a unique denotation, such
that there is one and only one object satisfying the description. In Oppen-
heimer and Zalta’s language, a definite description is formalized as “zx¢,”
meaning “the unique x such that ¢” (1991, 2-3). They use a free logic to
formalize definite descriptions: this means that “definite descriptions can’t
be substituted into universal claims without first knowing that they are
well-defined” (2011, 4), that is, without first knowing that the description
has indeed a denotation. This is important in order to avoid forcing a de-
scription to have a denotation: that a description has a denotation must
first be proved. Of course, as Oppenheimer and Zalta acknowledge (1991,
5), being well-defined or having a unique denotation does not mean that
the object denoted by the description exists iz reality. This specification is
fundamental in the context of Anselm’s ontological argument, since such
“existence in reality” is precisely what must be proved.

The logical principles governing definite descriptions in Oppenheimer
and Zalta’s language are the following (1991, 6-7; 2011, 3):

Description Axiom: the thing that satisfies ¢ satisfies also ¥ if and only
if there is a y that satisfies ¢, everything that satisfies ¢ is identical with y,
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and y satisfies Y. In other words, the x that satisfies ¢ satisfies also ¥ if and
only if there is a unique x that satisfies ¢, and x satisfies .

¥ [ixe /2] = 3y ((p [y/x] AVu ((p [u/x] = u :)/) AY [)//z]) .

Y [2x@/z] results from substituting zx¢ for z everywhere in v, and ¥
is an atomic or identity formula in which z occurs free. By abbreviat-
ing Ix(p A Vy(ply/x] = y = x)) into Ilx@, from Description Axiom we
have the following two logical principles:

Description Theorem 1: if there is a unique object satisfying ¢, then ¢

is well-defined.

dixe — Jy (y = zxgo) .

Lemma 1: if there is an object that is identical with the (unique) deno-
tation of a well-defined description, then this object is the denotation of
that description.

T =g — @[t/x], foranyT.
From Lemma 1, it is deduced Description Theorem 2: if a description

has a unique denotation, then any free variables in that description can be
substituted with that denotation.

dy ()/ = zxgo) — @lmxe/x].

These are the logical principles. The nonlogical principles are five (Op-
penheimer and Zalta 1991, 8-14; 2011, 5-6):

Connectedness of the binary Relation G “greater than”: for any two
objects x and y, either the former is greater than the latter, or vice versa, or
the two are the same object.

VxVy (xGy VyGxVx = y) .

For Oppenheimer and Zalta, Relation G is not required to be an order-
ing relation: it is just a connected relation (1991, 13). The difference be-
tween ordering relation and connected relation is that an ordering relation
must be transitive (xGy A yGz — xGz) and antisymmetric (for each dis-
tinct x and y, xGy — —(yGx)). Relation G only requires that all pairs of
conceivable objects are in the relation, without ordering these objects from
a least element to a greatest element. Thus, Relation G does not require
transitivity: what matters is that Relation G connects any two conceivable
objects and sees which one is greater than the other. This implies that, as
per Relation G, there are not two distinct conceivable objects that have the
same “greatness” (whatever it means): if two conceivable objects have the same
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“greatness,” then the two objects coincide, they are the same. Therefore, it is
not clear why Relation G is not antisymmetric, since antisymmetry means
xGy A yGx — x = y, and this is indeed part of the formula of Relation
G. I will return to this in a moment.

Premise 1: there is an x which is conceivable and such that no other
object y is greater than x and also conceivable.

Ix (Cx A =Ty ()/Gx A Cy)) .

If we replace “(Cx A =3y (yGx A Cy))” with “¢;” then Premise 1 reads:
Jxp;. “None greater” differs from “greatest” there is a fundamental dif-
ference between the property “element (of a set) than which there is
no greater” and the property “greatest element (of a set).” Assuming a
nonempty set 7 and a binary relation R, the element x of 7 satisfying the
first property is called “Maximal elementx” =4Vs € T : x <5 — x > s.
The element x of 7 that satisfies the second property is called “Greatest el-
ement x” =4 Vs € T : xGs. Let’s ask: assuming a set C of all conceivable
things, is x¢; the maximal or the greatest element of C? The definition of
maximal element would fit the “negative” wording “none greater.” How-
ever, a maximal element is not required to be comparable to all other el-
ements of a set (i.e., the relation establishing the maximal element is not
required to apply to all elements of the set): there can be elements with
which the maximal element is 7ot in relation, hence there can be more
than one maximal element. This contradicts Relation G, because it is de-
fined to apply to all pairs of elements ro the set. This means that x¢; is the
greatest element of set C.! But this would imply that Relation G is an or-
dering one—and, as mentioned, for Oppenheimer and Zalta Relation G is
not required to be an ordering one. We have an impasse: either x¢; is the
greatest element of set C and Relation G is an ordering one, or Relation G
is not an ordering one and nothing assures us that there is an element than
which a// other elements of set C are less great.?

This impasse is apparently solved by the third nonlogical principle,
Lemma 2: if there is an x, which satisfies ¢; (i.e., being conceivable and
such that nothing greater can be conceived), then this x is unique.

Axp; — Ilxe;.

This follows from Relation G: as mentioned, if two elements have the
same “greatness,” then they are identical. So, if we have more than one
maximal element of set C, these elements are the same. There is only one
maximal element in set C. However, this implies that Relation G applies
to all elements of C—which, again, is not required by the definition of
maximal element.



Andrea Vestrucci 1005

There is a fundamental characteristic constituting Anselm’s ontolog-
ical argument: the distinction between existing in intellectu and exist-
ing in re. This distinction is formalized as distinction between existen-
tial quantifier 3x and existence predicate Elx. In Oppenheimer and Zalta’s
formalization, 3x is not existentially loaded: it simply means “there is
an object x such that,” without claiming that this x exists also in re-
ality. This implies that there are objects that do not exist in reality:
Jx(—F!x). The distinction between existential quantifier and existence
predicate follows from Zalta’s theory of abstract objects (Zalta 1983; see
also http://mally.stanford.edu/theory.html), which can be encapsulated in
the following principle: Alx <> — ¢E!x : an object x is abstract if it is not
possible for x to exist in reality.

The distinction between existential quantifier and existence predicate is
as the basis of the fourth nonlogical principle, Premise 2: if the object x
with the property ¢; (being conceivable and such that nothing greater can
be conceived) fails to exist iz realizy, then there is another object, which is
greater than object x and conceivable.’

Elixgy — 3y (szx(m A Cy) .

The final nonlogical principle is the Definition of God: Z=4pxXP1, where
¢ is a constant with the same denotation of the description. From these
logical and nonlogical premises, Oppenheimer and Zalta formalized their
version of Anselm’s ontological argument (1991: 14-15).

OPPENHEIMER AND ZALTA’S ANALYSIS OF THE COMPUTATIONAL
SIMPLIFICATION

As part of the program in computational metaphysics, Oppenheimer and
Zalta aimed to test their formalization of Anselm’s argument in an au-
tomated reasoning environment. In order to do so, they represented all
logical and nonlogical premises into the syntax of the first-order theorem
prover Prover9.

Figure 1 shows the representation of all logical and nonlogical
premises—for details, see Oppenheimer and Zalta (2011, 7-12). The “As-
sumptions” panel features, from top to bottom: Description Theorem 1
(line 1); Lemma 1 (line 2); Description Theorem 2 (line 3); a Sorting
Principle for definite description (line 4); Connectedness of Relation G
(line 5); Definition of the property “none greater” (line 6); Premise 1 (line
7); Lemma 2 (line 8); Premise 2 (line 9); Definition of God (line 10). The
“Goals” panel features the conclusion of the argument, that is, what is to
be proved: that g exists in reality, or E'lg.

Some notes on this representation. “Relationl” stands for a 1-place
relation. “Ex1 (Relation,x)” (resp. “Ex2 (Relation,x,y)”)
means that an object x (resp. two objects x and y) exemplifies a 1-
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8 Prover9/Maced
File Preferences View Help

Language Options Formulas ipvovz@()pbo\s Mace4 Optons | Addtonal Input |

horkont_| weFomes? | G
rsamotons | wetromes? | _cex

->

all x all F all y ((Object(x) & Relationl(F) & Object(y)) -> ((Is_the(x,F) & x=y) -> Ex1(F,y))
all F (Relationl(F) -> ((exists y (Object(y) & Is_the(y,F))

-> (all t(z) -> (Is_t F) -> Ex1(F,2)))))).

all x all F (Is_the(x,F) -> (Relationl(F) & Object(x))).

all x all y ((Object(x) & Object (y)) -> (Ex2(greater_than,x,y) | Ex2(greater_than,y,x) | x=y)).

(x) -> (Exl(none_greater,x) <->
ble,x) & -(exists y (Object(y) & Ex2(greater_than,y,x) & Exl(conceivable,y)))))).

(Object (x) & Ex1 (non: ater,x)) .

(x) & Ex1(non
(x) & Ex1 (no

er,x)) ->

x (Obj r,x) & (all y (Object(y) -> (Exl(none_greater,y) -> y=x)))).

all x (Object(x) -> ((Is_the(x,none_greater) & -Exl
exists y (Object(y) & Ex2(greater_than,y,x) & Exl(cc

->
vable,y)))) .

Is_the(g,none_greater).

t | wel Formed? Clear
Goals: Hohight |

Figure 1. Ontological Proof on Prover9.

place (resp. 2-place) Relat ion; those are used to represent, respectively,
the “none greater” property and the “greater than” relation. The formula

“Is_the” represents definite descriptions. The Sorting Principle (line 4)
formalizes that “Is_the” is satisfied by an Object for a Relation.
The formulation of connectedness of Relation G (line 5) confirms that the
Relation spans over a// pairs of elements of set C. The Definition of “none
greater” (line 6) serves to explain which is the “Relationl” to which
the “Ex1” in Premise 1 refers (line 7). The property “e” in Premise 2 (line
9) stands for “existing in reality.”

Prover9 works by clausification: premises are reduced to a disjunction
of atomic formulas (or negation of atomic formulas), universal quanti-
fiers are dropped, existential quantifiers undergo Skolemization (the ex-
istentially quantified variable is replaced by a function whose arguments
are the universally quantified variables - if any - that precede the exis-
tential quantifier), the negation of the conclusion is also clausified, and
this clausified negation of the conclusion is assumed as a premise. Thus,
Prover9 works in a Reductio environment: the proof consists in deriving a
contradiction from the resulting set of assumptions. (For a more detailed
explanation, see https://mally.stanford.edu/cm/ontological-argument/old/
clausifyingDescThm1.html.)

By running Prover9 and analyzing the output, Oppenheimer and Zalta
discovered that Prover9 needed only Description Theorem 2, Sorting Prin-
ciple, Definition of “none greater,” Premise 2, and definition of God (and,
clearly, the conclusion to be proved, i.e., that g exists 77 re) to build a proof.
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Thus, Prover9 did 7oz need Description Theorem 1, Premise 1, Lemma 2,
and the connectedness of Relation G.

For Oppenheimer and Zalta this simplification rises serious logical ques-
tions. Some of their observations include (2011, 16-19): (1) Such simpli-
fication “reveal[s] that minimal logical and non-logical machinery is nec-
essary for formulating an ontological argument for the existence of God,”
so that it might appear that “the computationally-simplified version of the
argument reveals that it has a subtle logical beauty” (2011, 17); (2) Since
Premise 1 and Lemma 2 are not necessary, then there is not (logical) need
to justify the use of the definite description zx¢; because (a) the Reductio,
by negating Elzx@;, does not assume that the description has denotation,
and (b) the use of definite description is justified within the proof itself,
that is, within the Reductio environment; (3) The simplification elicits a
generalization of Premise 2 (see below); (4) The simplification seems to
clarify that the ontological argument makes use of the diagonal argument
(see next section); (5) Since the connectedness of Relation G is not nec-
essary, then Relation G does not need to be connected either: “it simply
has to satisfy Premise 2, i.e., be such that Elixg; — Jy(yGixep; A (y)”
(2011, 18). Thus, the “burden” of the ontological proof would fall on the
“shoulders” of Premise 2 alone.

The analysis of the computationally discovered simplification shows a
flaw in the original formalization of the ontological argument. This flaw
concerns the soundness of Premise 2: as mentioned, the simplified onto-
logical argument does not need to justify the use of definite descriptions
(since Premise 1 and Lemma 2 are expunged), and this justification can
neither come from Premise 2 alone, because Premise 2 does not presup-
pose that there is a well-defined definite description for ¢;. Therefore,
Premise 2 can be true (and thus the argument can work) only by using the
conclusion of the ontological argument, that is, that the definite descrip-
tion denotes (is well-defined) and that such denotation exists 77 re (2011,
20). This is a vicious circle. The alternative is to find an independent sup-
port for the use definite description. But this means that, “though the
simplified ontological argument is valid, Premise 2 is questionable and to
the extent that it lacks independent justification, the simplified argument
fails to demonstrate that God exists” (2011, 21).

As mentioned, in light of the computational simplification Oppen-
heimer and Zalta argued that Premise 2 could be generalized into the fol-
lowing Premise 2’: —=Elx — Jy(yGx A Cy) (2011, 17; see also 2021, 13):
Premise 2 states that if something does not exist iz re, then something
else is greater than that and conceivable. In 2021, to undermine some
criticisms in Garbacz (2012), Oppenheimer and Zalta further generalized
Premise 2 into the following universal claim, called Premise 27 (2021, 13):

Vi (((p1 AN—=Elx — Ty (ny A Cy)) .
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Premise 2” states that for every object x, if x is such that none greater can
be conceived and it does not exist iz re, then, there is another conceivable
object y which is greater than x. By substituting Premise 2 to Premise 2,
the argument needs both Premise 1 and the connectedness of Relation G
to reach the conclusion (2021, 13-14). This confirms that the computa-
tional simplification showed that there was a problem with Premise 2: the
application of Prover9 was necessary to detect and address an issue con-
cerning the relationship between Premise 2 and the claim the ontological
argument aims to demonstrate, God’s existence 7 7e.

In what follows, I further discuss one of Oppenheimer and Zalta’s ob-
servations on the computational simplification, and I present a theological
interpretation of it.

DIAGONALIZATION OF THE ONTOLOGICAL ARGUMENT

I focus on Oppenheim and Zalta’s observation that the computational
simplification shows that Anselm’s ontological argument makes use of the
diagonal argument:

[TThe new analysis of the argument brings out much more clearly that it
deploys diagonal reasoning for a positive conclusion. [...] Anselm diago-
nalizes when he applies the description to itself in line (6), i.e., when he
invokes Description Theorem 2 after concluding within the Reductio that
there is something which is the conceivable thing such that nothing greater
is conceivable. Description Theorem 2 allows him to infer that the object
denoted by the description satisfies the matrix of the description, i.e., that it
is itself conceivable and such that nothing greater is conceivable. Since the
description itself is instantiated within its own matrix, we have a clear case
of diagonalization. But here the diagonal argument leads to an existence
claim, rather than to a nonexistence claim as in Russell’s Paradox. More
generally, diagonal arguments have been used to reach negative claims, such
as in Cantor’s proofs that the power set of a set A can’t be mapped 1-to-1
to a subset of A and that there is no 1-to-1 mapping from the set of real
numbers to the set of natural numbers. Diagonal arguments have also been
employed to generate aporiai, or puzzles such as the Liar Paradox. (Op-
penheimer and Zalta 2011, 18, my underlining; see also Oppenheimer and
Zalta 2021, 11)

The underlined part seems to me to be the core of the quotation. Let’s
try to unpack it. First, I recall some terminology: “(definite) description”
= “x¢”; “matrix of the description” = “p;” = “Cx A =y (yGx A (9)”;
Description Theorem 2 states that Iy(y = wx¢) — @[wxe/x], that is, any
free variable in a description matrix can always be substituted by the object
denoted by the description.

Back the quotation. The “line (6)” mentioned in the quotation cor-
responds to the following line in the tabular form (2011, 13; see also
line 4 at page 7): Cixgy A —3y(yGixey A Cy). This line reads: the unique
object satisfying the property being-conceivable-and-such-that-no-other-
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conceivable-object-is-greater-than-it is itself conceivable and such that no
other conceivable object is greater than it. To see how this derives from De-
scription Theorem 2, let’s proceed gradually. Line 5 of the tabular form as-
serts that there is a unique object that satisfies the matrix of the description:
Jy(y = 2x¢1). Notice that this is the antecedent of Description Theorem
2. Therefore, by applying Description Theorem 2, we have ¢ [2x¢; /x],
that is, we can substitute any free variable x occurring in the matrix of
the description (¢; = Cx A =3y(yGx A Cy)) with the unique object 2@,
that satisfies the matrix of the description. I recall that “zx¢;” abbrevi-
ates “x(Cx A =3y(yGx A (y))”; thus, if we substitute this to any x in the
description matrix we have:

Cix (Cx/\ -3y (ny/\ C)/)) A=y ()/sz (Cx/\ -3y (ny A Cy)) A Cy) .

This line is the expansion of the aforementioned line (6). It reads:
the unique object that satisfies the description matrix (i.e., the property
of being conceivable and such that no greater object is conceivable) also
uniquely exemplifies (i.e., it is #he instance of) exactly this description ma-
trix (or property), that is, “it is itself conceivable and such that nothing
greater is conceivable.” Is this “a clear case of diagonalization™?

“Diagonalization” is the name given to a method that Georg Cantor
used in 1891 to redemonstrate the two theorems mentioned in the quo-
tation: that the cardinality of set R of real numbers is bigger than the
cardinality of set N of natural numbers, and that the cardinality of the
powerset of any set A is larger than the cardinality of set A. Cantor already
proved the theorems in 1874, but he praised the method introduced in
1891 for its simplicity (Cantor 1891, 76).

I illustrate diagonalization starting from the first theorem. Cantor con-
siders a set M of elements ¢, which are infinite sequences of two digits, 7
and w, so thateach M > ¢ = (x1,x2...,%,...), where x1, %2 ..., %, ...
are either m or w (Cantor 1891, 75-76). Let’s take these elements ¢ ran-
domly and building a 1-to-1 correspondence with the elements of N, that
is, 1 23 45 6... Building this correspondence equates to enumerate the
elements of M. Cantor organizes this enumeration in an array (a square
matrix), where on the left we have the number of the elements ¢, and on
the top we have the number of the digits composing each ¢,: 4,1, 4,2,
a, 3, where 7 is the number of the element ¢ to which the digits belong:

€1 = \21,1: 41,25 «~+>Alus +++s A1y - -
e = \42,1, 42,2, ...,dz’l“ ey A Yy e
e3 = \43,1, 43,2, ...,Ll_g_#, ey A3y e

ey = (‘l/t,l’dﬂ,zv e s e Ay - )
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Cantor builds a new element of M, ep, by changing all digits located
on the diagonal 4,,, of the array, that is, all digits that occupy the position
having the same number () of the element ¢, the digit belong to: we
change the first digit of ¢, the second digit of ¢,, the third digit of e3, ...,
the u™ digit of e,... We change these diagonal digits by substituting 72
with w in case a,, = m, or w with m in case a,, = w. Question: what is
the position of this element ¢p in the list enumerating the elements of A£?
Perhaps e is in position number p? No, because the p™ digit of ep is built
on the modification of the digit 4,,, of the element ¢ in position p (i.e,
¢,). Since ep is built on the modification of a digit of each element of M,
then ep presupposes the whole array of 1-to-1 correspondences between
the elements of M and N. Therefore, ep is nowbere in the array. There is
no number 7 € N which corresponds to ep. If we consider the digit 4;;
of each ¢ (including ep) as the decimal digits of irrational numbers in the
interval (0,1), then each ¢ (including ep) is an element of R, but (at least)
ep is not in a one-to-one correspondence with an element of N. Thus, R
has a cardinality which is “bigger” than the cardinality of N: its infinity is
nondenumerable. QED

The second theorem is a generalization of the first. Let’s take a random
set A of infinite cardinality, and its powerset P (A4)—the powerset of a set
A is the set of all subsets of A. Let’s consider a function f(x) : A — P(A)
from elements of A to elements of P(A), and let’s assume this function is
surjective, that is, such that for all elements p of P(A) there is an element
x of A so that p = f(x). In other words, we assume that the function
covers all elements of the codomain P(A4). Let’s consider now D, a subset of
A, constituted by all those elements of A that are not in the range of f (x):
the function cannot map these elements to themselves in P(A4). Subset D
is defined as such:

D ={xed:x¢ f ).

D is a subset of A thus it must feature in P(A). Since per hypothesis the
function mapping A to P(A) is surjective, then also D, being a subset of
A, must be mapped by the function, that is, there must be elements 4 €
A : f(d) = D.But D is constituted by elements that do not belong to
their image of the function. Therefore, we have thatd € f(d) = D &
d ¢ f(d).Thisis a contradiction. Thus, the function that maps elements
of A to elements to its powerset is not surjective. The cardinality of P(4)
is greater than the cardinality of A. QED

Subset D is the diagonal set for the function f(x), because it is built
analogously to the element ¢p in the previous proof. In fact, in case the
cardinality of A is infinite, the hypothetically surjective function f(x) :
A — P(A) defines an infinite array with, on the left, all members x of
A, and on the top the same members as argument of the function f(x).
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The array is constituted by values 1 or 0 depending on whether or not
an x is member of P(A), that is, whether or not x € f(x). Let’s consider
all diagonal values, and let’s change them from 1 to 0 and vice versa. We
create a new row “D” (a new subset of A) constituted by all members of
A to which f'(x) does not apply: if (a, f(a)) = 0, then a is in D and
D # f(a); if (a, f(a)) = 1 then a is not in D and, again, D # f(a).
Thus, D ={x €A :x ¢ f(x)}. Row D is nowhere in the array because
it presupposes all values of the array. However, it should feature in it, since
it is a subset of A. Thus, we have a contradiction.

Both “diagonal objects” (it would be more appropriate to call them “an-
tidiagonal”), ep and D, share the same structure: (1) They are built on
the modification of the diagonal values on an array which lists, on the
left, and with no specific order, the elements x of a set, and on the top
the elements x (in the same order), so that the values of the array result
from a binary relation between left and top elements (for the first theo-
rem, it is the correspondence between enumeration of the elements of M
and enumeration of the elements’ digits; for the second theorem the bi-
nary relation is a function)?; (2) Point 1 (the modification of the diagonal
values) is justified by the fact that the definition of the diagonal objects
includes the negation of the binary relation that structures the array (in the
first theorem the digits of ep are per construction in 7o coordinates (x,x);
in the second theorem the members of D are not members of the function
of which they are the arguments)’; (3) Thus, the diagonal objects simul-
taneously belong and do not belong to the set of elements x, because the
diagonal objects presuppose all values of the array.

In light of this, it seems that the instantiation of the description zx¢;
within its own matrix is not a case of diagonalization for at least two rea-
sons. First, because for Oppenheimer and Zalta the belonging of zx¢; to
set C of conceivable things is not problematic (I will shortly return to this).
Second, because zx¢; is not an element that is built on the basis of consid-
ering all elements of set C. On the contrary, zx¢; is an element of set C that
enters on stage since the beginning of the ontological proof. It is perhaps
the only element of C about which we know something: that it satisfies ¢; .
Thus, I would say that the instantiation of the description within its own
matrix is a case of self-reference, but not all cases of self-references are cases
of diagonalization (Buldt 2016).

However, it is indeed possible to apply the diagonal method (in Cantor’s
version) to Anselm’s ontological argument (in Oppenheimer and Zalta’s
version). We consider the following array: on the left, the elements ¢ of set
C in random order; on the top, the same elements in the same random
order; and the values of each coordinate (¢;, ¢;) corresponds to whether
the binary relation G “greater than” is satisfied or not, with 1 if yes and 0
if not (0 also applies to the case ¢,Gc,, i.e., ¢, = ¢, ).
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Let’s focus on zx¢; . First, per construction of ¢;, the row corresponding
to zx¢; must have all 1 apart from the value of coordinates (zx@;, 2x¢1)
which is, of course, 0. Where is this row in the array? This row must be
unique: no other rows can have all 1. One way to make sure the row is
unique is to order the rows from the least to the greatest, but this way is
blocked by the “greater than” relation not being an ordering one. In other
words, since the “greater than” relation is not transitive, we cannot de-
duce from the array a row with all 1 (from 2Gb and 6Ge nothing assures
that 2Gv); for the same reason, as mentioned previously, we cannot deduce
from the array that this row is unique. Hence, the only way to make sure
that the row with all 1 is there and is unique is to build such row on the
array itself, i.e., on values of all other rows. One possibility is to select the
values on the diagonal (they are all zeros being all cases of ¢,Gc,) and to
build the values of the row zx¢; by changing all 0 on the diagonal into 1.
The choice of the diagonal is the most linear one to build a new row on the
other rows’ values. Moreover, the only entries we know for sure the values
are the one located on the diagonal. Finally, even if there is an element 7
whose row has all 1 (e.g., an hypothetical “second-to-zx¢;” element that
also exists 77 re), the row of this element 7 certainly has 0 on position
(corresponding to the diagonal entry (:m,m)), thus, 2x¢; is greater than ele-
ment 7 because its row has 1 on position ; it follows that the array cannot
display the entry whose coordinates are (zx¢;, zx¢;). Hence, Anselm’s on-
tological proof can be indeed thought as diagonal argument that preserves
both the non-ordering nature of G and the uniqueness of zx@;. I leave
to a future article the application of the fixed-point lemma (Godel’s “vari-
ant” of the diagonal argument; see Gaifman 2006) to Anselm’s ontological
argument.

There is another (less rigorous) way to build zx¢; as a diagonal object:
this has to do with the vagueness of the “none greater” property ¢;—in
specific, to the extent of this property. Set C is the set of all conceivable
objects. Thus, set C also includes the aforementioned array that lists all
conceivable objects. In this case the array is a self-referential object, since
the array itself must feature somehow within the array. Now, considering
the property ¢, the self-referential array seems 7oz to be greater than the
object that satisfies the property ¢;. In fact, it seems plausible that the
“none greater” property also applies to any metalinguistic treatment of the
object satisfying the property (in other words, “zx¢;” must be somehow
lesser that zx¢). Thus, zx¢; cannot be an object of the array, and yet the
array shall list all conceivable objects, and here we have another case of
diagonalization.

The philosophical and theological consequences are significant. The
fact that the object uniquely satisfying the property ¢; is a diagonal ob-
ject means that the conceivability of God is built on all elements of set
C—that is, the conceivability of God presupposes all conceivable objects.
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Therefore, “God” (the conceivable object called “God”) simultaneously
belongs and does not belong to the set of conceivable objects. In other
words, God can be placed within the set of conceivable objects only if it
is not placed within the set of conceivable objects. God is a conceivable
Something” that lies beyond conception.

Interestingly enough, this result echoes very closely what Anselm him-
self writes in chapter 15 of Proslogion: “Ergo domine, non solum es quo
maius cogitari nequit sed es quiddam maius quam cogitari possit.” In my
translation: “Therefore, o Lord, you are not only that than which none
greater can be thought, but you are something greater than what can be
thought.” God is not just that than which nothing greater can be con-
ceived: God is that which is greater than everything that can be conceived.
This seems to shake the very hypothesis of God being a concept, an ob-
ject of thought, a word—the noun “God.” As mentioned, this is implicitly
present in the vagueness of the extent of the “none greater” property: does
the extent of such property also include the metalinguistic level? If yes,
then how can a discourse on the object satisfying the “none greater” prop-
erty be possibly “not greater” than this object? And how is a conceivable
object ¢ = (zx@; + y) less “great” than zx¢;? These questions would invite
to deepen the idea that the notion of God impacts the very constitution
of language, and our (metalinguistic) notions about language. This would
mean that the notion of God might impact the distinction between object
language and metalanguage, as I explore in Vestrucci (2019b).

To sum up: either zx¢; is not a diagonal object and is indeed a member
of set C (without considering some issues arising from the peculiarity of set
C and the vagueness of property ¢1), or zx¢; is a diagonal object and thus
its belonging to set C'is at least problematic. But we should not consider
this as a negative result, as much as we should not consider the results of
Cantor’s applications of the diagonal method as negative. On the contrary,
they are all positive results: they clarify the nature and properties of sets and
their members. In Cantor’s case, the application of the diagonal method
leads to the construction of specific mathematical objects (Gaifman 2006,
711-12) and to the formulation of theorems (Simmons 1990, 283—-84). In
the case of Anselm’s proof, the application of the diagonal method deepens
the nature of set C and opens to further questions on the property “none
greater” and the object satisfying it.

PHiLosoPHICAL AND THEOLOGICAL RELEVANCE OF SymBoLic Al
APPLICATIONS

The application of symbolic Al programs to metaphysical and theological
arguments and concepts turns out to be relevant for at least three areas of
current investigation in philosophy of religion. These areas are: the discus-
sion of criticisms to natural theology, the relationship between theology
and mathematics, and the interdisciplinary research in religion and Al.
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Following the division between external and internal criticisms to nat-
ural theology (Kojonen 2017), the use of automated reasoning assistants
contributes to the debates on the incoherency of the concept of God, the
epistemology of natural theology (as two of the “external critiques”), and
the notion of evidentialism (as one of the “internal critiques”). Concern-
ing the incoherency of the concepts of God, the assessment of the outputs
from the theorem provers helps to deepen and recalibrate the limits, ex-
tents, and provability of our conceptualizations of God. More specifically,
it clarifies whether, and how, our concepts of God are compatible with our
premises and presuppositions about a divine being, or clash against our
expectations—or implicit presuppositions—about the adherence of our
concepts with the (“divine”) object they aim to signify.

As far as the epistemology of natural theology is concerned, the explo-
ration of metaphysical and theological arguments in an automated reason-
ing environment provides useful and unexpected insights on the logical
structure and justifiability of the arguments. For instance, the discussion
about the applicability of the diagonal method to the ontological argu-
ment might present new insights on the discussion on the equilibrium
between knowability and unknowability of God. If, per diagonal method,
the concept of God simultaneously belongs and does not belong to the set
of conceivable things, then God is simultaneously conceivable and beyond
conceivability. This fosters alternative approaches to the question about
the extent, limit, and perfectibility of our knowledge about God. This
might even create fruitful bridges with the theology of the deus abscond;i-
tus, the specific approach in revelatory theology according to which divine
revelation is simultaneously revelation of God’s mystery and revelation that
God is a mystery (see Vestrucci 2019a, 100-10).

Concerning the critique of evidentialism, the feedback that theorem
provers provide about the logical structure of an informal argument might
be used as external evidence or disproof of such argument. One of the
greatest advantages in the use of theorem provers is the impossibility to
cheat: the reasoning assistant shows immediately, and irrevocably, if an
argument does not work logically. If in the automated reasoning environ-
ment the conclusion cannot be deduced by the premises, then it simply
cannot be deduced: there is no possibility to trick the argument to make
it work, for example by using vaguely defined concepts, or by formulating
argumentations affected by fallacies (e.g., petitiones principii).

It is important to underline that, in spite of the name “theorem provers,”
the aim of using such software in a philosophical or theological setting is
not simply to prove once and for all the informal arguments. Rather, the
aim is to 7mprove them, to better understand their complexity, to discover
new aspects previously unnoticed, and to detect redundancies and over-
complications. This improvement is part of the ongoing investigation on
the logical depth, fruitfulness, and potentialities of metaphysical and the-
ological reflections.
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I pass to the second area of relevance: the philosophical debate on the
relationship between theology and mathematics. The assessment of theo-
rem provers applications to metaphysical and theological arguments con-
tributes to the research on the consonance between the objects of theology
and the objects of mathematics, both in the research practice and in the
methodology of such research.

Concerning the research practice, working in an automated reasoning
environment forces metaphysics and theology to speak “mathematically”
by translating an informal argument into algorithmic syntax. This oper-
ation presupposes at least the following practices: to consider each aspect
of the argument distinctively, to outline the axioms and principles of the
argument, and to detect and clarify the semantic vagueness sometimes af-
fecting theological and metaphysical concepts. For instance, the issues with
the simplified version of the ontological argument might invite to fur-
ther clarify the “none greater” property. Moreover, the distinction between
quantifier and existence predicate helps in clarifying the definition of ab-
stract objects, which can amend a possible aporia in the matter (Harrison
2017, 483).

Concerning the methodological aspect, the application of theorem
provers to metaphysical and theological arguments forces to work in
an axiomatic environment and to evaluate how efficiently—or not—
metaphysics and theology work in such environment. This contributes
significantly to the current revival of the classical issue of the scientificity of
theology—that is, whether and how theology can be considered a science
(Pannenberg 1973; Peterson 2008; Melville 2010; Munchin 2011; Gécke
2018). In the famous debate with theologian Karl Barth, mathematical
logician (and former theologian) Heinrich Scholz argued that theology is
not a science because its language cannot be axiomatized as in mathemat-
ics, and because its propositions cannot be tested by an objective third
party—that is, by empirical experiments or in an axiomatic environment
(Scholz 1971). Theology, according to Scholz, could claim the status of
science only if its propositions are not only affirmed, but demonstrated.
The axiomatic environment and the theorem prover outputs invite to con-
sider Scholz’s requirement not as a limit, but as a regulative idea, and as a
challenge for the future of theology.

The third aspect of relevance is the interdisciplinary research on the re-
lationship between religion and Al. The literature on this topic is growing
fast. A large number of publications focuses on the possibility to formu-
late modeling for concepts and arguments belonging to human studies.
One example concerns the attempts to approach the study of belief and
replicate believing processes via computational models and Al programs
(for a review on recent outputs, see Vestrucci, Lumbreras, and Oviedo
2021). Another example is transhumanism: the evaluation of how technol-
ogy (including Al programs) interacts and interconnects with human body
and mind contributes to rethinking what makes the human and what the
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future of humankind would be, very often via a religious vocabulary (Mer-
cer and Trothen, 2014; Smith 2018). A third example is the aforemen-
tioned investigation on the impact that technology has not only on our
religious tenets and their plausibility and communicability, but also on
our religious practices and rituals.

The applications of symbolic Al programs to metaphysical and theo-
logical arguments, and the assessment of such applications, contribute to
debates in philosophy of religion, and to the interdisciplinary research on
religion and Al, in ways that are unique, and different from the majority
of other directions. This approach does not merely present analogies be-
tween concepts from computer science and from humanities, nor does it
outline reflections based on the passive reception of technological outputs.
Rather, it applies computational tools to develop the research in philosophy
and theology; it carefully zranslates philosophical and theological concepts,
inferences, and arguments into machine syntax; and it assesses the results of
these applications from within, that is, from the actual effort of using and
operating with Al programs. As such, this direction of research is a con-
crete model for building applied bridges and deep, fruitful dialogues not
only between disciplines, but also between competencies in religion and Al.
There are exciting, open ways to explore.

CONCLUSION

In this article, I have presented an example of close interconnection be-
tween philosophy of religion and Al research. This example focused on
Oppenheimer and Zalta’s analysis of their computationally-discovered
simplification of Anselm’s ontological argument via the application of an
automated reasoning program. The article formulated an assessment of
one of the observations on this computationally discovered simplification,
concerning the use of the diagonal method in the ontological argument.
The assessment showed that the implementation of such a method could
make the concept of God simultaneously belonging and not belonging to
the set of conceivable objects. This invites to reconsider and further inves-
tigate the thinkability of the concept “God.” As such, the assessment of
the Al exploration of metaphysical and theological arguments effectively
contributes to the current philosophical debates on theology’s language
and epistemology, its relationship with mathematics, and the relationship
between religion and Al This close interplay between computation and
philosophy of religion fosters an applied and concretely interdisciplinary
research.
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NorTtEs

1. Moreover, the definition of greatest element seems to better fit the idea (proper to
Anselm’s proof) of “absoluteness” of the element satisfying the property. In fact, we could imag-
ine the cardinality of set C to increase in time, with new conceivable things becoming its el-
ements proportionally to the process of learning. Td say that the ontological argument itself
contributes to this increase of the cardinality of C by introducing the notions of “conceivable
object” and of element satisfying the “none greater” property. From this “temporal” perspective,
set C in time #; might have a new element, which was unconceivable at time # and which is
greater than the maximal element of C at #. For this reason, the definition of greatest element
seems to better fit the idea of x¢; : x¢; is assured to be greater than any (past, present, and
future) element of C. I plan to deepen this temporal approach to the ontological argument in a
future article.

2. Oppenheimer and Zalta use the metaphor of arrows pointing away from x to y whenever
x is greater than y. They write: “Now, in any model in which ‘Ix¢,’ is true, i.e., in which there is
a conceivable object such that no conceivable object is greater, there has to be at least one object
having no arrows pointing towards i#! Such an object is called a maximal object”™” (1991, 13). But
this is not supported by the definition of maximal element: the “incomparable” objects, that is,
the objects to which Relation G does not apply, also have also no arrow pointing towards them.

3. In other words, if the object with property ¢ is only abstract, then another object can
be conceived to be greater than this object (and the first object does not satisfy the property ¢).

4. In the Grelling-Nelson Paradox (1908), another case of diagonalization, the left side of
the array lists all possible properties, the top lists the English string representing these property
(e.g., the word “written” for the property of being written), the values of the array refer to
whether the binary relation “is denoted by” is satisfied or not (e.g., we have 1 for the coordinates
[written, “written”], but 0 for the coordinates [happy, ‘happy”]).

5. In the Grelling-Nelson Paradox the diagonal object corresponds to the property of be-
ing heterological, that is, being a word nor denoting its own meaning (negation of the binary
relation): the row corresponding to this property is built on the modification of all values of the
diagonal of the array.
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