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THE DESIGN OF EVOLUTIONARY ALGORITHMS: A
COMPUTER SCIENCE PERSPECTIVE ON THE
COMPATIBILITY OF EVOLUTION AND DESIGN

by Peter Jeavons

Abstract. The effectiveness of evolutionary algorithms is one of
the issues discussed in The Compatibility of Evolution and Design,
where it is argued that such algorithms are only effective when strin-
gent preconditions are met. This article considers this issue from the
perspective of computer science. It explores the properties of prob-
lems that can be effectively solved by evolutionary algorithms, and
the extent to which such algorithms need to be carefully adjusted.
Although there are important differences between the study of evo-
lutionary algorithms in computer science and the study of biological
evolution, it is argued that the experience of computer science can
help to strengthen the claim that evolutionary mechanisms generally
require a considerable degree of fine-tuning.
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Introduction: What Does the Study of Evolutionary
Algorithms Contribute to the Design Debate?

The role of a computer scientist is to design and analyze computational
and algorithmic approaches to problems. The idea of using evolutionary
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algorithms to solve computational problems has now been explored by
computer scientists for at least five decades (Holland 1975). The idea of
a generic approach that can solve a wide variety of problems, a “univer-
sal acid” that can dissolve all difficulties, in the words of Daniel Dennett
(1995), is very attractive. There is a wide literature on the subject and a
number of regular conferences.

Using evolutionary algorithms has a particular appeal to students, as it
offers the apparent prospect of solving problems that we do not know how
to tackle any other way—problems that are poorly understood or appear
to be difficult to solve with conventional approaches. It is a popular topic
for student projects.

However, the sad fact of experience is that evolutionary approaches to
computational problems, far from providing a convenient short-cut to suc-
cess, generally only achieve satisfactory results after a great deal of adjust-
ing, tuning, and development (Eiben and Smith 2015). This empirical
finding is now becoming accepted amongst computer scientists, and the
popularity of using evolutionary approaches to solve computational prob-
lems may be declining somewhat. It is becoming clear that there is no
“universal acid”—to achieve significant results, an evolutionary algorithm
must be carefully tailored to the problem in hand, and the problem itself
must have appropriate properties.

The issue of the effectiveness of evolutionary algorithms is a key ele-
ment of the discussion in Chapter 4 of The Compatibility of Evolution and
Design (2021), which is called “Not by Selection Alone: Evolutionary Ex-
planations and Their Requirements.” This chapter considers carefully the
assumption that is often made that “evolution was not difficult, or did not
require design.” The whole chapter argues, to the contrary, that “evolu-
tion … has very demanding preconditions.” Although dealing primarily
with evolution in the context of biology, it touches on wider issues of
evolutionary algorithms in other areas as well. I think understanding the
necessary conditions for an evolutionary algorithm to be effective is an im-
portant question, and some of my own research has attempted to explore
and quantify these kinds of issues for evolutionary algorithms in general.

This argument is framed by Kojonen as a claim about the stringent
necessary preconditions for (biological) evolution. I think this case is well
made. I am going to argue here that the analysis and experience of evolu-
tionary algorithms from computer science also allows us to make similar
statements about the stringent preconditions for effective evolutionary ap-
proaches in other contexts beyond biology.

Moreover, I will argue that it is not just the preconditions that need to
be carefully tuned to ensure success, but also the details of the algorithmic
implementation itself. The idea that design may be seen in the process of
going from a vague algorithmic strategy to a detailed implementation of
that algorithm (as well as in the results of running the algorithm), may be
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unfamiliar to the “theist on the street,” who features prominently in Ko-
jonen (2021), but this idea may be particularly congenial to a computer
scientist. The word “design,” as used in computer science or software en-
gineering, generally refers to the act of transforming an idea for a program
into a fully worked-out implementation, with all the details instantiated.
This transformation is generally not easy, it can require a high degree of
skill, and this skill is what professional software engineers are paid for. The
idea that having a high-level concept such as “evolution by natural selec-
tion” is sufficient on its own, and that no further design work is necessary
to build a process that works in practice, is out of line with the experience
of anyone who has written a substantial program.

The argument that Kojonen makes in Chapter 4, and that I will try to
support here, is similar to the argument from fine-tuning in cosmology,
discussed in Chapter 3 of Kojonen (2021). The fine-tuning argument in
cosmology is based on the surprising discovery that the laws of physics
and the fundamental constants of nature seem to have to be very precisely
set in order for their outworking to yield a complex universe where it is
possible for life to exist (Lewis and Barnes 2016). A similar fine-tuning
argument for evolutionary algorithms would run as follows: the study of
evolutionary algorithms in computer science has shown that the detailed
features of such algorithms, and the environment that they work in, need
to be carefully chosen and delicately balanced, in order for the outworking
of such an algorithm to yield high quality outcomes in a feasible amount
of time.

I will consider below some of the evidence for such claims. When ex-
ploring the properties of algorithms, it can be helpful to make a distinction
between the properties of the problem to be solved, and the properties of
the algorithm that is being used to solve it; I will consider each of these
two aspects in turn in what follows. Of course in the context of biolog-
ical evolution it may be misleading to think about evolution as “solving
a problem,” but it may still be helpful to conceptualize biological evolu-
tion as the outworking of an evolutionary algorithm in a particular prob-
lem space. I will discuss some specific features of biological evolution after
considering general properties of computational problems and evolution-
ary algorithms.

Properties of Problems

What kinds of problems are suitable for evolutionary algorithms? Usually,
problems where we are looking for a combination of choices that together
achieve some desired quality. To model such problems, we typically rep-
resent the choices to be made by a list of variables, each of which can be
set to a number of different values. Each possible combination of settings
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for this list of variables is then assigned a numerical value, referred to as its
“fitness.”

This model of the problem we are trying to solve defines a “fitness land-
scape,” which is an abstract high-dimensional space consisting of all the
possible combinations of settings for the relevant variables,1 where each
combination has an associated numerical fitness value. Often the variables
can only take a finite number of discrete values, so the fitness is defined by
a numerical function of many discrete variables.

Functions of many discrete variables, are generally hard to visualize,
and in most cases quite hard to specify in a concise way. Because of this
difficulty, there is a tendency to impose our intuitions from the much
lower-dimensional continuous spaces we are used to, such as the three-
dimensional space that we inhabit, or even the two dimensions of a stan-
dard geographical map. Abstract fitness landscapes are sometimes visual-
ized as similar to real landscapes in some rural idyll, with gently rolling
hills and valleys. In such visualizations, the fitness value corresponds to
the height at a given position; hence, the fitness function is simplified to
a function of just two values, the x and y coordinates on the map. This
form of visualization was introduced in the context of biological evolution
by Sewall Wright (1932) and is still the default mental model for many
people when considering the behavior of evolutionary algorithms.

However, such appealing visualizations can give a very misleading or
oversimplified picture.

In a few cases, the picture of a gently sloping landscape, where a se-
quence of small moves uphill will take us in a direct path from wherever
we happen to be to the highest point in the landscape (that is, the point of
maximum fitness) is an appropriate picture, but this is only true for very
special functions with very special properties. For example, if the fitness
value depends on each of its input parameters separately, then we can in-
deed move easily to the point with the highest possible fitness value, by
simply adjusting each individual variable to its best value and keeping it
there. The fitness function in such cases is, in some sense, not really a func-
tion of many variables at all, it is a sum of functions of a single variable,2

and each variable can be individually adjusted without worrying about the
others. Such functions are sometimes called “separable” functions.

This very unusual special property of being separable is possessed by the
fitness function in the classic example introduced by Dawkins in The Blind
Watchmaker (Dawkins 1986) and discussed on page 107 of The Compati-
bility of Evolution and Design. In this example, it is shown that a random
sequence of letters can be easily mutated step by step into the phrase “ME-
THINKS IT IS LIKE A WEASEL.” In order to achieve this, a fitness func-
tion is defined which depends on the closeness to the target phrase, and a
simple evolutionary algorithm is then used to maximize this function by
gradually modifying random sequences and selecting those which have a
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higher value for the fitness function (that is, those that resemble the target
phrase more closely when looking at individual letters).

This example has been criticized for building-in information about the
target phrase into the fitness function, and hence not demonstrating the
emergence of any new information. Kojonen considers these criticisms and
agrees that they have some weight, but he concludes that “in Dawkins’
WEASEL algorithm, for example, it is not inappropriate for there to be
a selecting condition for the letters, because there are also selective condi-
tions in natural environments. The point of the algorithms is to demon-
strate the possibility of building complex order by a stepwise process
involving differential survival, if the preconditions of such an evolutionary
algorithm are met.”

However, the point I am drawing attention to here is not that the target
phrase is built-in to the definition of the fitness function, but that the
fitness function has been chosen to be of a particularly simple and helpful
kind to facilitate the evolutionary process. Because the fitness function has
been chosen to be a sum of distances to the target function for each letter
separately, it has a single peak value which is easily located incrementally:
every possible sequence of letters can be easily adjusted to a sequence with
a higher fitness value, by changing one letter (or more than one). This
means that every possible sequence of 28 letters or spaces (all 1.19 × 1040

of them) has many, many sequences of small steps toward the target phrase
along which the fitness gently rises, and each of these improving sequences
has only 28 steps or fewer. These special properties of the fitness function
make an evolutionary algorithm simple to write and virtually certain to
succeed.

But what if we select a more realistic fitness function, where the fitness
values represent the quality of the sequence of letters as a whole, in some
way, rather than the individual letters? For example, the fitness could be
defined by how plausible the entire sequence of letters is as a statement by
Hamlet about clouds and weasels? Or how well the sequence works as a
whole as a phrase about weasels in iambic pentameter? A fitness function
that depends on the overall sequence, rather than the individual letters,
is arguably closer to the “selective conditions in natural environments”
which do, after all, concern the viability and likely reproductive success of
the organism as a whole. Fitness functions of these kinds arguably still have
the problem that they build-in knowledge about the desired outcome, but
with this kind of fitness function simple evolutionary algorithms are much
less likely to succeed in reaching any phrase about weasels in a reasonable
amount of time. In many areas of the fitness landscape, such a fitness func-
tion would provide no guidance as to how to modify the current sequence,
since the current sequence and all its neighbors would have a zero fitness
value. In such regions, even making the first steps of an evolutionary al-
gorithm would be difficult. In other places, the possible modifications to
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improve fitness might take the sequence in different, incompatible, di-
rections. There would be many cases where all small changes would be
individually deleterious, reducing the fitness value, even if jointly advan-
tageous. For example, from the sequence “YONDER CLOUD ALMOST
IN CAMEL,” what small modifications would increase its fitness?

It is a simple mathematical fact that the vast majority of fitness functions
are not separable: they cannot be expressed as sums of functions of a single
variable. In general, the value for any particular variable that results in the
highest fitness value will depend on the value of the other variables and
cannot be simply fixed once and for all. For example, in the biological
context, it clearly makes no sense to talk about the correct or optimal
value for one single base-pair in a genome—it obviously cannot be defined
without knowing the context of the other base-pairs in the rest of the
genome. Hence Dawkins’ example, and the intuition behind it, of gently
rising short paths toward a unique optimal fitness peak is misleading for
this application.

Once we move away from the rather trivial case of separable fitness
functions, can evolutionary algorithms still achieve success? That depends
of course on how success is defined. One measure of success may be
the highest fitness value that is found by the algorithm. Another may be
the number of generations or steps needed to achieve a high fitness value.
We now consider how the nature of the fitness function may impact on
each of these.

For almost all fitness functions, there will be more than one combina-
tion of the input values that constitute a local peak, in the sense that chang-
ing any of the variables individually will only reduce the fitness value.
These local peaks may have values that are much lower than the overall
best possible fitness value. This arises in all cases where changes to differ-
ent variables are separately deleterious but jointly advantageous—a very
common feature of fitness landscapes for interesting problems.

Hence, if success means finding a combination of values for the variables
that has a high fitness value, then this may be difficult to achieve by a
sequence of small modifications. Simple evolutionary algorithms, which
make small modifications to individual variables, may not be able to find
any variants with improved fitness, and the population may become stuck
at a local peak with a rather small fitness value (Watson 2006). For fitness
functions with multiple local peaks, which are sometimes called “rugged,”
we have to design more sophisticated algorithms, as we will discuss in the
next section.

For example, if the problem we are trying to solve is the design of a lock-
and-key mechanism, where some of our variables describe the structure of
the lock, and others describe the shape of the key, then once we have a
basic system that works (i.e., the key fits in the lock) it will be very hard
to improve: changing any of the individual variables is likely to make the
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mechanism worse, since the key will no longer fit the lock. Only by mak-
ing coordinated changes to whole sets of variables at once can we move
to an improved system overall, and this requires a more sophisticated ap-
proach than simply making changes at random to individual variables and
selecting for increased fitness. Every functioning lock-and-key mechanism,
however basic or unsuitable, is likely to be a local peak of a fitness function
that measures overall usefulness, and improving such systems with an evo-
lutionary algorithm will require a careful restructuring of either the fitness
function or the algorithmic approach.

The problem of moving away from one local peak to another, poten-
tially better, point in the fitness landscape is widely recognized. Already in
1935, Wright wrote that “It has seemed to me … that the central problem
of evolution … is that of a trial and error mechanism by which the locus of
a population may be carried across a saddle from one peak to another and
perhaps a higher one” (Wright 1935, 264). For a detailed discussion of this
issue, and the various responses that have been made to it, with a substan-
tial list of references, see Chapter 1 of Richter and Engelbrecht (2013). As
a rough summary, Watson (2006) notes that, on the whole, biologists have
tended to assume that the relevant biological fitness landscapes will some-
how avoid the problem of local peaks by always providing incrementally
improving paths from points with low fitness to points with high fitness;
computer scientists, in contrast, have generally sought to refine the basic
evolutionary algorithm with extra mechanisms to escape from local peaks,
as discussed in the next section. Either approach can be seen as a case of
fine-tuning the basic evolutionary process to avoid getting stuck at local
peaks.

In addition to the problem of local peaks, there is another issue which
may limit the ability of an evolutionary algorithm to achieve even a local
peak of fitness. One important feature of any algorithm is the time that it
takes to achieve its goal. For computer scientists, an algorithm for which
the number of steps required to carry it out increases exponentially with
the size of the input is generally considered to be infeasible, except for very
small problems. This is the fundamental reason why blind search over all
possible combinations of variables is not considered a useful algorithm for
maximizing a fitness function—the number of combinations that need to
be explored increases exponentially with the number of variables, and soon
becomes totally impractical, even on the fastest computers.

Kojonen discusses this issue on page 102, and points out that, because
of the need to consider the time required for the process, “evolutionary
theory is built on the assumption that chance alone is insufficient as an
explanation.” Clearly some element of chance, in the form of random vari-
ation, is an important component of evolutionary algorithms, but such al-
gorithms can only be considered as more effective than chance alone when
they achieve their goals in a more feasible amount of time. In other words,
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an evolutionary algorithm that requires an exponential number of steps to
make significant progress may well be no more practical or effective than
simply trying combinations at random.

In the early days of evolutionary computing, it was sometimes naively
assumed that evolutionary algorithms would be more effective than blind
search across the whole range of possible problems (see Goldberg 1989, fig.
1.4, as cited in Eiben and Smith 2015, 44). However, this view was shown
to be incorrect by the “No Free Lunch” theorem (Wolpert and Macready
1997), which is mentioned briefly by Kojonen (2021, 111). This theorem
demonstrated that, when averaged across all possible fitness functions, the
performance of any search algorithm that relies on sampling the problem
space, without knowing its structure, would be the same as blind search.
In other words, an evolutionary search algorithm that is more effective
than blind search on some fitness functions must pay the price by being
worse on others. The relevance of considering all possible fitness func-
tions (including extremely bizarre and unlikely ones) may be disputed, but
the No Free Lunch theorem has been extended and sharpened in a num-
ber of ways, including to the “Almost No Free Lunch Theorem” (ANFL)
(Droste, Jansen, and Wegener 2002), and is still a helpful corrective to
overoptimistic views. Jansen summarizes the situation as follows:

We know from the ANFL … that good performance on some problems
implies bad performance on many others. The best we can hope for is to
tune the search heuristic we work on in a way that it performs well on the
problems we happen to be interested in. (Jansen 2013, 62)

In trying to understand better the time required for an evolutionary pro-
cess to find a local peak, Kaznatcheev (2019) introduced a scheme for
categorizing fitness landscapes as “easy” or “hard.” He notes that there are
families of fitness functions where, from some starting points, following
improving paths can trace out exponentially many steps, before reaching
a local peak. How common such landscapes are is not yet clear, and it has
been shown (Kaznatcheev, Cohen, and Jeavons 2020) that restricting the
nature of the fitness function to some simple forms can ensure that all im-
proving paths are of a more practical length (i.e., a polynomial function
of the number of variables). However, the mere existence of landscapes
with exponentially long paths to the nearest peak serves to counteract the
oversimplifying intuition that fitness landscapes all resemble gently rolling
hills. Kaznatcheev proposes that the existence of hard landscapes:

suggests an alternative metaphor for fitness landscapes: fitness landscapes as
mazes with the local fitness optima as exits. Natural selection cannot see
far in the maze, and must rely only on local information from the limited
genetic variation of nearby mutants. In hard mazes, we can end up following
exponentially long winding paths to the exit because we cannot spot the
shortcuts. (Kaznatcheev 2019, 2)
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He concludes that, in such cases, finding a combination of variables
with a locally optimal fitness value by a simple evolutionary algorithm
will require an infeasible amount of time, and conjectures that this may
account for various instances of open-ended and ongoing evolution in
biology.

Kojonen concludes in Chapter 4 that many of the questions that have
been raised about the effectiveness of evolutionary mechanisms in biol-
ogy, including notions such as “irreducible complexity,” can helpfully be
viewed as a discussion of the properties of a fitness function that are re-
quired in order for an evolutionary algorithm to obtain certain kinds of
results within a feasible amount of time. Rather than viewing such argu-
ments as attempts to show the impossibility of biological evolution, they
can be viewed as showing “how demanding the conditions for evolvabil-
ity are, and how much fine-tuning evolution actually requires” (Kojonen
2021, 119). I think this is a helpful and productive approach.

Current research on the structural properties of fitness functions may
shed more light on such questions, which are crucial to understanding the
power of evolutionary algorithms in general, as well as understanding more
about the preconditions needed for biological evolution in particular.

Properties of Evolutionary Algorithms

We now turn from the properties of the fitness function that are required
for an evolutionary algorithm to work effectively, to the properties of such
algorithms themselves. Although evolutionary algorithms are discussed in
Kojonen (2021), especially in Chapter 4, no detailed description is given
for such an algorithm. This is surely appropriate in a book on philosoph-
ical aspects of design arguments, but it may leave the reader unclear as to
what is actually involved in going from the basic idea of evolution to a
fully implemented specific algorithm. What is it about such an algorithm
that needs to be designed?

A helpful breakdown of the high-level design decisions that need to be
made to implement any evolutionary algorithm is given in Jansen (2013).
He lists five modules that must be implemented and combined to con-
struct a typical evolutionary algorithm: initialization, selection, mutation,
crossover, and termination. For each of these modules, the algorithm de-
signer must make a number of design decisions. I will give a few more
details of these design decisions below, to indicate what is involved.

Initialization: Any evolutionary algorithm works with a collection of
individuals, each of which exemplifies some setting of the chosen vari-
ables for the problem, and hence is associated with a numerical value by
the fitness function. At the start of any run of the algorithm, this popu-
lation needs to be initialized, by choosing the individuals that make up
the initial population. One decision that has to be made is the size of the
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population, and there is very little guidance in the literature on how to
select this value. In many implementations, the initial individuals are then
chosen at random, often with a uniform probability distribution across the
entire search space. This may appear to be making few assumptions and
injecting the minimum amount of information at the start, but in fact it
is already giving the algorithm a significant advantage by sampling from
widely different regions of the search space. Jansen notes that “many evo-
lutionary algorithms suffer if the members of a population are too similar
to each other” (Jansen 2013). In other words, the algorithm is less likely
to work if it is started without a great deal of variety already present in the
initial population.

Selection: The evolutionary algorithm will repeatedly select individuals
to reproduce, and select individuals to replace, and hence the population
will change over a series of repeated cycles or generations. Selection is usu-
ally based on the fitness of the individuals (although Jansen notes that
some evolutionary algorithms “do additionally take other properties of the
individuals or even the population into account”). However, the way in
which fitness values are used to select individuals has to be specified. One
way is to use the values of the fitness function to build a probability distri-
bution, and then select individuals at random based on this distribution.
For example, we can arrange that an individual is selected with probability
proportional to its fitness value.3 One problem with this approach is that
it depends very strongly on the numerical values of the fitness function—
for example, if we add a constant to all the fitness values (which is not a
significant change in terms of finding the optimum), then the probability
values change. Hence, it is common to use more sophisticated selection
mechanisms, such as ranking the entire population, and then selecting a
fixed number of them. Often specific tweaks are also introduced to the
selection mechanism to try to increase the diversity in the resulting pop-
ulation and prevent “premature convergence.” In summary, the algorithm
designer must arrange for individuals to be selected to reproduce and in-
dividuals to be selected to be replaced, in such a way that the population
maintains a suitable size and a good spread of values for the variables. For
challenging problems, only carefully chosen selection schemes are effective
(Watson 2006).

Mutation: Once individuals have been selected for reproduction, the al-
gorithm may introduce the possibility of small changes occurring; these are
usually implemented as random changes to individual variables selected at
random. However, a key parameter to be specified is the mutation rate, or
the expected number of changes in each generation. If this is too high or
too low the evolutionary algorithm will not perform well.

Crossover: The idea of crossover is to generate one or more offspring that
are in some way similar to their parents. If the parents are represented by
a list of variable values, then these lists of values have to be combined in
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some way to generate offspring individuals that can be inserted into the
population. There are many ways of combining two lists of values, but a
technique that is commonly used in evolutionary algorithms, based on the
analogy with sexual reproduction in biology, is to switch between the val-
ues of two parents at a small number of crossover points. (Note that this
requires choosing a specific ordering for the variables, which may not be
part of the problem specification, and can be done in many different ways,
some of which will work better than others (Watson 2006).) The number
of crossover points, the number of offspring, and even the number of par-
ents to combine, are all parameters that must be chosen by the algorithm
designer. Combining elements from individuals at different points in the
fitness landscape is one way that an evolutionary algorithm can move indi-
viduals in the population away from a local peak to another position with
a higher fitness value, which is why such a complex mechanism of deriving
offspring is included.

Termination: Some evolutionary algorithms may be designed to run in-
definitely, but in most cases there is a need to halt execution at some point,
and return an answer. This may be as simple as running for a fixed number
of generations, or it may be that the algorithm runs until some property of
the population is achieved. If the aim is to find a combination of values for
the variables that maximizes the fitness function, then the algorithm will
return an individual that has the maximum fitness value out of all the in-
dividuals considered during the run. However, it should be noted that this
individual may well not be present in the final population—evolutionary
algorithms often select the highest-fitness individuals from the population
to reproduce and replace them with their offspring, but the offspring may
be less fit than their parents, and such high-fitness individuals may not
arise again.

The above description should give some indication of the decisions that
need to be made in order to implement an evolutionary algorithm. There
are many parameters to be chosen, including the population size, the se-
lection rule, the mutation rate, the number of crossover points, and so
on.

The principal challenge for evolutionary algorithm designers is that the de-
sign details, i.e., parameter values, have such a large influence on the per-
formance of the algorithm. Hence, the design of algorithms in general, and
Evolutionary Algorithms in particular, is an optimization problem itself.
(Eiben and Smith 2015, 121, acronym expanded)

But it is not enough to solve that optimization problem and find good
initial values for the parameters. Jansen comments that:

There are different ways of setting the parameters in evolutionary algo-
rithms. the simplest and most common way is to set all parameters to some
fixed values in advance and keep the parameters unchanged during the run.
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Usually, one experiments a little to find settings that lead to acceptable per-
formance. It is not clear however that such static parameter settings are able to
deliver satisfactory results at all. (Jansen 2013, 18, italics added)

In other words, some additional feedback mechanisms must generally be
added to modify the properties of the evolutionary algorithm in a goal-
directed way during a run, based on some information about its current
performance. Jansen notes that typical examples of such information in-
clude “the current population, the population’s distribution in the search
space, the current fitness values, or measures based on a history of the
population.”

I hope this brief excursion into the design of evolutionary algorithms
makes clear that, once we get into fleshing out the necessary details, we
find ourselves a long way from a self-evident, automatic process. There is
now a very large and growing literature within computer science on the
design of evolutionary algorithms, and this seems to indicate that success-
ful algorithms, even evolutionary ones, need to be carefully designed. Pre-
sumably, all the authors of such articles believe that they have contributed
something, and that their designs were not the inevitable outworkings of
some automatic mechanism.

In summary, I claim that the experience of developing evolutionary al-
gorithms in computer science provides a new perspective on the existence
of a well-functioning evolutionary process in nature.

Over recent decades the Evolutionary Computation community shifted
from believing that Evolutionary Algorithm performance is to a large ex-
tent independent from the given problem instance to realising that it is
[dependent]. In other words, it is now acknowledged that Evolutionary Algo-
rithms need more or less fine-tuning to specific problems and problem instances.
(Eiben and Smith 2015, 146, acronyms expanded, italics added)

The Case of Biological Evolution

Biological evolution is not generally viewed as an example of an algorithm
solving a predefined problem, but it may be helpful to ask whether the
experience of developing and using evolutionary algorithms for solving
problems in other settings can help us to appreciate important aspects of
biological evolution. Kojonen notes that there have been many attempts
to obtain insights about biological evolution from studies of evolutionary
algorithms in general (Kojonen 2021) and I think this approach can be
valuable.

Certainly biological evolution is often thought of as exploring a problem
space, where the individual points are represented by genotypes, which are
combinations of values for variables—either combinations of allele values
for a list of genes, or combinations of base pairs in a DNA sequence.
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Of course there are a number of significant contrasts between the stan-
dard evolutionary algorithms of computer science, as described earlier, and
the case of biological evolution (Eiben and Smith 2015, 45). The biologi-
cal notion of “fitness” is not some predefined function of the genotype,
but is an a posteriori measure of differential survival and reproduction
rates associated with different organismal phenotypes. These phenotypes
result from a highly complex biochemical process of development, influ-
enced by both the genotype and the environment. The differential survival
and reproduction rates for different phenotypes then arise from complex
interactions between organisms and their environments, including other
organisms. Hence the fitness values in biological evolution are generally
stochastic quantities that may vary with time, and with changes in the
environment (Nichol et al. 2016).

However, the notion of a population of organisms occupying various
positions within a fitness landscape is still a helpful model, at least for
studies of evolutionary processes over short time periods in reasonably sta-
ble environments. In such cases, it still makes sense to ask what properties
does such a fitness landscape need to have in order for an evolutionary
mechanism to result in the arrival of more complex or well-adapted or-
ganisms over time.

Theoretical studies have shown that the potential effectiveness of sim-
ple evolutionary mechanisms depends critically on the properties of such
fitness landscapes. For example, Wilf and Ewens consider fitness land-
scapes associated with sequences of alleles for different genes and assume
that the optimal allele can be set for each gene separately, as in Dawkins’
“WEASEL” example; they conclude that in such cases a simple evolution-
ary algorithm can find an optimal combination of alleles in a reasonable
amount of time (Wilf and Ewens 2010). In contrast, Chatterjee, Pavlo-
giannis, Adlam and Nowak (2014) consider fitness landscapes associated
with sequences of base-pairs for a single gene and assume that the fitness
of a sequence only begins to increase when a significant fraction of the
base-pairs in the sequence are correctly chosen; they show that in such
cases simple evolutionary algorithms cannot find high-fitness sequences in
a feasible amount of time.

Questions about necessary properties of biological fitness landscapes are
discussed in some detail in Kojonen (2021). For example, the question of
whether functional protein sequences are sufficiently prevalent and suffi-
ciently clustered to enable new ones to be successively discovered by an
evolutionary search process within a reasonable timescale. Such questions
are likely to become increasingly prominent now that increasing attempts
are being made to measure biological fitness landscapes empirically. Ini-
tial results of such studies seem to suggest that many empirical fitness
landscapes are highly rugged, that is, they have many local peaks (Obol-
ski, Ram, and Hadany 2017). In fact, it has been suggested that such
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properties, and the tight constraints they impose on possible evolutionary
trajectories, can be used to develop ways of steering evolution to partic-
ular outcomes, such as preventing the emergence of antibiotic resistance
(Nichol et al. 2015).

Another contrast between biological evolution and evolutionary algo-
rithms in other contexts is the astonishing scale of the biological problem
space. Most organisms have very large numbers of genes (many thou-
sands) and extraordinarily large numbers of base-pairs in the genotype
(many millions or billions). This is way beyond the scope of evolutionary
algorithms applied to other problems, which typically have at most a few
tens of variables. No-one would contemplate attempting to use an evolu-
tionary algorithm in any other context for problems of the scale of geno-
types or even the coding sequences for individual genes. Even with the
ability to simulate large populations over billions of generations, current
evolutionary algorithms are only applied to problems with a few tens of
variables, and we have seen that even then it is acknowledged that they
generally need considerable tailoring and adjustment to make significant
progress. The enormous gulf in scale between what is achievable by evolu-
tionary algorithms in computer science and in biology suggests there must
be something rather unusual about biological systems, to allow an evolu-
tionary algorithm to function effectively so far beyond the usual range of
applicability.

Some have suggested that the fact that biological fitness arises indirectly
from the outworkings of complex developmental processes—the so-called
genotype–phenotype map—may structure the resulting fitness landscapes
in ways that make evolutionary mechanisms unusually effective. For ex-
ample, Kirschner and Gerhart in The Plausibility of Life, argue for a no-
tion they call “facilitated variation” where small genotypic changes can
lead to significant variation in the resulting phenotypes, while preserv-
ing functionality (Kirschner and Gerhart 2005). Others have suggested
that the nature of the genotype–phenotype map may allow exploration
of larger regions of the genotype space without affecting fitness, through
the presence of large “neutral networks,” and hence facilitate the discov-
ery of novel phenotypes (Wagner 2007). Discovering the properties of
genotype–phenotype maps is an important research question, not just for
understanding the historical evolution of the biosphere, but also for un-
derstanding the processes of mutation and selection within individual or-
ganisms that drive diseases such as cancer (Nichol et al. 2019).

If the special features of biological fitness landscapes do turn out to
be particularly congenial to evolutionary mechanisms, then I suggest that
should be seen as a further example of remarkable fine-tuning in the
context of biology, and hence strengthen the argument being made by
Kojonen.
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Conclusion

Kojonen argues, in Chapter 4 of The Compatibility of Evolution and De-
sign, that evolution and design do not need to be seen as competing ex-
planations, but can be seen as compatible. I have tried to argue here that
the perspective of computer science, in particular the accumulated expe-
rience with analyzing, developing and using evolutionary algorithms over
the past 50 years, can add additional elements to Kojonen’s argument.

Much of the long-running discussion about the compatibility of evo-
lution and design in the context of biology has considered the process of
biological evolution “from the outside,” without focusing too closely on
the details of the evolutionary mechanism. Some see these details as irrel-
evant to the question of whether organisms give evidence of design. For
example, in a detailed review of Darwin’s Origin of Species, the botanist
and theist Asa Gray (1861) writes that “the adoption of … Darwin’s par-
ticular hypothesis, if we understand it, would leave the doctrines of final
causes, utility, and special design just where they were before.” Kojonen
summarizes the arguments put forward by Gray in the following terms:

According to Gray, it makes no difference whether the ordered complexity
of life is produced through a secondary cause, such as evolution, or through
a miraculous act of creation that exceeds the normal operation of nature. In
either case, he claims, design can only be inferred from the purposeful arrange-
ment of the end result. (Kojonen 2021, 100, italics added)

Such arguments “from the outside,” based on the observed features of the
biosphere, are important, and are still being ably and persuasively made,
for example by Alexander (2018). However, it may now be possible to add
another strand to the argument, by considering the details of the evolu-
tionary mechanism “from the inside.”

Such arguments have also been attempted for a very long time. In-
deed, Kojonen points out that Gray also raised questions of this kind,
by questioning the source of positive variation in organisms, and the need
for suitable laws and environment within which evolution could operate
(Kojonen 2021, 100). However, I think that the study of general evolu-
tionary algorithms in computer science, over the past 50 years or so, now
allows such arguments to be made in a more informed and detailed way.

As one example of the way that computer science may bring a distinc-
tive perspective, consider the following quotation from Daniel Dennett,
that is cited by Kojonen as an example of the belief that an evolutionary
explanation renders design unnecessary:

Paley was right in saying not just that Design was a wonderful thing to ex-
plain, but also that Design took Intelligence. All he missed – and Darwin
provided – was the idea that this Intelligence could be broken up into bits
so tiny and stupid that they didn’t count as intelligence at all, and then



1066 Zygon

distributed through space and time in a gigantic connected network of al-
gorithmic process. (Dennett 1995, 133) cited in Kojonen (2021, 103)

As a computer scientist, I see the art of breaking up a task into “bits so
tiny and stupid that they didn’t count as intelligence” as the fundamental
design activity in my professional arena—the art of designing and im-
plementing an algorithm. To orchestrate such “tiny bits” into an overall
process that achieves remarkably impressive ends is the core skill of the
software engineer.

As I hope I have indicated in this article, this process of algorithm design
is not trivial, or automatic, in the case of evolutionary algorithms. I think
this adds to the case that simply pointing in the general direction of natural
selection is not a sufficient explanation of biological or any other phenom-
ena, unless the algorithmic details can be fleshed out, and it seems to be
becoming clearer that fleshing out those details requires a great many so-
phisticated refinements and careful adjustments. Kojonen notes the trend
in evolutionary biology to seek “substantial expansion and modification of
evolutionary theory,” and we have seen a similar recognition in computer
science of the need for substantial refinement to the basic components of
evolutionary algorithms.

Moreover, it is becoming clear that even our most carefully crafted evo-
lutionary algorithms only work well in very special circumstances, when
the fitness function satisfies very special properties. Kojonen sums up these
requirements at a high level as follows:

In order for evolution to be possible, viable forms must be close enough to
each other in the space of possible form, and must form a network that can
be navigated by evolutionary search. (Kojonen 2021, 132)

If we discover that the fitness function associated with genome sequences,
via the exquisite transformations of each organism’s genotype–phenotype
map, happens to satisfy these special properties, then that seems to consti-
tute another remarkable example of fine-tuning, which is highly compati-
ble with the idea of overall design. As Kojonen remarks:

Instead of explaining the appearance of purpose in biology by reference to
non-teleological factors, the attempt at explaining design by evolution has
succeeded in finding new layers of teleology. The further we study, the more
the universe seems to be filled with teleology (Kojonen 2021, 133)

Notes

1. Technically, the set of points in the fitness landscape is the Cartesian product of the
domains of the variables.

2. That is, we assume that the fitness function f (x1, x2, . . . .xn ) =
n∑

i=1
gi (xi ) for some

unary functions gi . Such functions are sometimes initially expressed as a product of unary func-
tions, but such expressions are easily transformed into a sum by taking logarithms.
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3. That is, set the probability of selecting an individual s to f (s )/
∑

x ε P
f (x ), where f is the

fitness function, and P is the population.
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